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Abstract. The relativistic Hartree-Bogoliubov (RHB) model is extended to include density-dependent
meson-nucleon vertex functions. Compared with standard relativistic mean-field effective interactions with
non-linear meson-exchange terms, the density-dependent meson-nucleon couplings provide an improved
description of asymmetric nuclear matter, neutron matter and nuclei far from stability. The relativistic
quasiparticle random-phase approximation (RQRPA) is formulated in the canonical single-nucleon basis of
the relativistic Hartree-Bogoliubov (RHB) model. Both in the particle-hole and particle-particle channels,
the same interactions are used in the RHB calculation of the ground state and in the matrix equations
of the RQRPA. The RHB+RQRPA is employed in the analysis of multipole excitations of neutron-rich
oxygen isotopes.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 21.60.Jz Hartree-Fock and random-
phase approximations

1 Relativistic Hartree-Bogoliubov model with

density-dependent meson-nucleon couplings

Quantum hadrodynamics (QHD) models, based on the
mean-field approximation and with non-linear meson-ex-
change effective interactions, have been very successfully
applied in the description of a variety of nuclear-structure
phenomena, not only in nuclei along the valley of β-
stability, but also in exotic nuclei with extreme isospin val-
ues and close to the particle drip lines. In particular, the
relativistic Hartree-Bogoliubov (RHB) model, based on
the relativistic mean-field theory and on the Hartree-Fock-
Bogoliubov framework, provides a unified description of
mean-field and pairing correlations. On the neutron-rich
side, RHB studies include: the halo phenomenon in light
nuclei [1], properties of light nuclei near the neutron-drip
line [2], the reduction of the spin-orbit potential in nu-
clei with extreme isospin values [3], the deformation and
shape coexistence phenomena that result from the sup-
pression of the spherical N = 28 shell gap in neutron-rich
nuclei [4], properties of neutron-rich Ni and Sn isotopes [5].
In proton-rich nuclei, the RHB model has been used to
map the drip line from Z = 31 to Z = 73, and the phe-
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nomenon of ground-state proton radioactivity has been
studied [6–8].

An alternative to QHD with non-linear effective inter-
actions are models with density-dependent meson-nucleon
vertex functions. Even though these two classes of mod-
els are essentially based on the same microscopic struc-
ture, i.e. on density-dependent interactions, the latter can
be more directly related to the underlying microscopic
nuclear interactions. In the framework of the density-
dependent hadron field theory [9–11], the nucleons are
described as point particles that move independently in
the mean fields which originate from the nucleon-nucleon
interaction. The theory is fully Lorentz invariant. Con-
ditions of causality and Lorentz invariance impose that
the interaction is mediated by the exchange of point-like
effective mesons, which couple to the nucleons at local
vertices. The single-nucleon dynamics is described by the
Dirac equation

[γµ(i∂µ −Σµ)− (m+ gσσ)]ψ = 0 , (1)

Σµ = gωωµ + gρτ · ρµ + e
(1− τ3)

2
Aµ +ΣR

µ . (2)

σ, ω, and ρ are the meson fields, and A denotes the elec-
tromagnetic potential. The meson-nucleon couplings gσ,
gω, and gρ are assumed to be vertex functions of Lorentz-
scalar bilinear forms of the nucleon operators. In most
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applications of the density-dependent hadron field theory
the meson-nucleon couplings are functions of the vector
density ρv =

√

jµjµ, with jµ = ψ̄γµψ. The density depen-
dence of the vertex functions gσ, gω, and gρ produces the
rearrangement contribution ΣR

µ to the vector self-energy,

ΣR
µ =

jµ
ρv

(

∂gω
∂ρv

ψ̄γνψων +
∂gρ
∂ρv

ψ̄γντψ · ρν +
∂gσ
∂ρv

ψ̄ψσ

)

.

(3)
The inclusion of the rearrangement self-energies is essen-
tial for the energy-momentum conservation and the ther-
modynamical consistency of the model [9].

In addition to the self-consistent mean-field potential,
pairing correlations have to be included in order to de-
scribe ground-state properties of open-shell nuclei. In the
framework of the relativistic Hartree-Bogoliubov model,
the ground state of a nucleus is represented by the product
of eigenvectors of the generalized single-nucleon Hamil-
tonian which contains two average potentials: the self-
consistent mean-field Γ̂ which encloses all the long-range
particle-hole (ph) correlations, and a pairing field ∆̂ which
sums up the particle-particle (pp) correlations. In the Har-
tree approximation for the self-consistent mean field, the
relativistic Hartree-Bogoliubov equations read
(

ĥD −m− λ ∆̂

−∆̂∗ −ĥD +m+ λ

)(

Uk
Vk

)

= Ek

(

Uk
Vk

)

, (4)

where ĥD is the single-nucleon Dirac Hamiltonian, and m
is the nucleon mass. The chemical potential λ has to be
determined by the particle number subsidiary condition
in order that the expectation value of the particle num-
ber operator in the ground state equals the number of
nucleons. ∆̂ is the pairing field. The column vectors de-
note the quasiparticle spinors and Ek are the quasiparticle
energies. The RHB equations are solved self-consistently,
with potentials determined in the mean-field approxima-
tion from solutions of Klein-Gordon equations for the me-
son fields. In most applications of the RHB model, pairing
correlations have been described by the pairing part of the
finite-range Gogny interaction.

The density dependence of the meson-nucleon cou-
plings is parameterized [10],

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω , (5)

where

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(6)

is a function of x = ρ/ρsat, and ρsat denotes the baryon
density at saturation in symmetric nuclear matter.
The five constraints fi(1) = 1, f ′′σ (1) = f ′′ω(1), and
f ′′i (0) = 0, reduce the number of independent parameters
to three. Three additional parameters in the isoscalar
channel are gσ(ρsat), gω(ρsat), and mσ —the mass of
the phenomenological sigma-meson. For the ρ-meson
coupling the functional form of the density dependence is
suggested by Dirac-Brueckner calculations of asymmetric
nuclear matter:

gρ(ρ) = gρ(ρsat) exp [−aρ(x− 1)] . (7)

The isovector channel is parameterized by gρ(ρsat) and aρ.
For the masses of the ω and ρ mesons the free values are
used: mω = 783 MeV and mρ = 763 MeV. In ref. [11], we
have introduced the density-dependent meson-exchange
effective interaction (DD-ME1): the seven coupling pa-
rameters and the σ-meson mass have been simultaneously
adjusted to properties of symmetric and asymmetric
nuclear matter, and to ground-state properties (binding
energies, charge radii and differences between neutron
and proton radii) of twelve spherical nuclei.

Nuclear-matter properties calculated with the DD-
ME1 interaction have been compared with those ob-
tained with the density-dependent effective interaction
TW-99 [10], and with two standard non-linear parame-
ter sets NL3 [12] and NL1 [13]. The later non-linear effec-
tive interactions have been used extensively in studies of
nuclear-structure phenomena over the whole periodic ta-
ble, from light nuclei to superheavy elements. For symmet-
ric nuclear matter all four interactions display similar sat-
uration densities (with NL3 at the low end), and binding
energies per nucleon (with NL1 at the high end). The prin-
cipal difference between the density-dependent effective
interactions DD-ME1 and TW-99 on the one hand, and
the non-linear interactions NL3 and NL1 on the other, are
the properties of asymmetric matter. The energy per par-
ticle of asymmetric nuclear matter can be expanded about
the equilibrium density ρsat in a Taylor series in ρ and α:

E(ρ, α) = E(ρ, 0)+S2(ρ)α
2+S4(ρ)α

4 + . . . , α ≡
N − Z

N + Z
.

(8)

E(ρ, 0) = −av +
K0

18ρ2
sat

(ρ− ρsat)
2 + . . . (9)

and

S2(ρ) = a4+
p0

ρ2
sat

(ρ−ρsat)+
∆K0

18ρ2
sat

(ρ−ρsat)
2+ . . . (10)

The empirical value at saturation density S2(ρsat) = a4 =
30 ± 4 MeV. The parameter p0 defines the linear den-
sity dependence of the symmetry energy, and ∆K0 is the
correction to the incompressibility. The non-linear effec-
tive interactions NL1 and NL3 have a considerably larger
value a4 of the symmetry energy at saturation density.
This is also true for other standard non-linear parameter
sets, and is due to the fact that the isovector channel of
these effective forces is parameterized by a single constant,
the density-independent ρ-meson coupling gρ. With a sin-
gle parameter in the isovector channel it is not possible
to reproduce simultaneously the empirical value of a4 and
the masses of N 6= Z nuclei. This only becomes possible if
a density dependence is included in the ρ-meson coupling,
as is done in TW-99 and DD-ME1. In a recent study of
neutron radii in non-relativistic and covariant mean-field
models [14], the linear correlation between the neutron
skin and the symmetry energy has been analyzed. In par-
ticular, the analysis has shown that there is a very strong
linear correlation between the neutron skin thickness in
208Pb and the individual parameters that determine the
symmetry energy S2(ρ): a4, p0 and ∆K0. The empirical
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Fig. 1. The asymmetry energy as a function of the baryon
density, calculated with the four relativistic interactions DD-
ME1, TW-99 [10], NL3 [12], and NL1 [13].

value of rn−rp in 208Pb (0.20±0.04 fm from proton scat-
tering data) places the following constraints on the val-
ues of the parameters of the symmetry energy: a4 ≈ 30–
34 MeV, 2 Mev/fm3 ≤ p0 ≤ 4 Mev/fm3, and −200 MeV ≤
∆K0 ≤ −50 MeV. While these constraints are satisfied by
the density-dependent interactions DD-ME1 and TW-99,
the parameters of the symmetry energy of the non-linear
interactions are systematically much larger. In particular,
p0 is too large by a factor ≈ 2, and the correction to the
incompressibility ∆K0 has even a wrong sign for the two
non-linear interactions. The qualitatively different density
dependence of the symmetry energy for the two classes of
effective interactions is illustrated in fig. 1, where we plot
the coefficient S2 as a function of the baryon density. Due
to the very large value of p0 and the small absolute value
of ∆K0, for NL3 and NL1, S2 displays an almost linear
density dependence of ρ. For the two density-dependent
interactions, on the other hand, the quadratic term of S2

dominates, especially at densities ρ ≥ 0.1 fm−3.
In ref. [11] the relativistic Hartree-Bogoliubov (RHB)

model with the density-dependent interaction DD-ME1 in
the ph-channel, and with the finite-range Gogny interac-
tion D1S in the pp-channel, has been tested in the anal-
ysis of ground-state properties of the Sn and Pb isotopic
chains. In fig. 2 we plot the calculated differences between
radii of neutron and proton ground-state distributions of
Sn nuclei. The non-linear interaction NL3 systematically
predicts larger values of rn − rp. This effect is even more
pronounced for the older parameter set NL1. The differ-
ence between the values calculated with NL3 and DD-ME1
increases with the number of neutrons to about 0.1 fm at
N = 82, but then it remains practically constant for N >
82. The calculated values of rn − rp are compared with
experimental data [15]. While both interactions reproduce
the isotopic trend of the experimental data, NL3 obviously
overestimates the neutron skin. The values calculated with
DD-ME1 are in excellent agreement with the experimental

112 114 116 118 120 122 124 126

A

0

0.1

0.2

r n
-r

p
 (

fm
)

EXP

DD-ME1

NL3

Fig. 2. DD-ME1 and NL3 predictions for the differences be-
tween neutron and proton rms radii of Sn isotopes, compared
with experimental data from ref. [15].

data, this result shows that the isovector channel of the
effective interaction DD-ME1 is correctly parameterized.

The RHB model with density-dependent meson-
nucleon couplings represents a significant improvement in
the relativistic mean-field description of the nuclear many-
body problem and, in particular, of exotic nuclei far from
β-stability. The improved isovector properties of the effec-
tive interaction in the ph-channel on the one hand, and the
unified description of mean-field and pairing correlations
in the Hartree-Bogoliubov framework on the other, offer
a unique possibility for accurate studies of nuclei with ex-
treme ground-state isospin values and with Fermi levels
close to the particle continuum.

2 QRPA based on the relativistic

Hartree-Bogoliubov model

The multipole response of unstable nuclei far from the line
of β-stability presents a very active field of research, both
experimental and theoretical. These nuclei are character-
ized by unique structure properties: the weak binding of
the outermost nucleons and the effects of the coupling be-
tween bound states and the particle continuum. On the
neutron-rich side, in particular, the modification of the ef-
fective nuclear potential leads to the formation of nuclei
with very diffuse neutron densities, to the occurrence of
the neutron skin and halo structures. These phenomena
will also affect the multipole response of unstable nuclei, in
particular the electric dipole and quadrupole excitations,
and new modes of excitations might arise in nuclei near
the drip line.

A quantitative description of ground-states and prop-
erties of excited states in nuclei characterized by the close-
ness of the Fermi surface to the particle continuum, ne-
cessitates a unified description of mean-field and pair-
ing correlations, as for example, in the framework of the



78 The European Physical Journal A

Hartree-Fock-Bogoliubov (HFB) theory. In order to de-
scribe transitions to low-lying excited states in weakly
bound nuclei, in particular, the two-quasiparticle config-
uration space must include states with both nucleons in
the discrete bound levels, states with one nucleon in the
bound levels and one nucleon in the continuum, and also
states with both nucleons in the continuum. This cannot
be accomplished in the framework of the BCS approxi-
mation, since the BCS scheme does not provide a correct
description of the scattering of nucleonic pairs from bound
states to the positive energy particle continuum. Collec-
tive low-lying excited states in weakly bound nuclei are
best described by the quasiparticle random-phase approx-
imation (QRPA) based on the HFB theory.

The relativistic random-phase approximation (RRPA)
has been recently employed in quantitative analyses of col-
lective excitations in nuclei. Two points are essential for
the successful application of the RRPA in the description
of dynamical properties of finite nuclei: i) the use of ef-
fective Lagrangians with non-linear self-interaction terms,
and ii) the fully consistent treatment of the Dirac sea of
negative-energy states. The RRPA with non-linear meson
interaction terms, and with a configuration space that in-
cludes the Dirac sea of negative-energy states, has been
very successfully employed in studies of nuclear compres-
sional modes [16,17], of multipole giant resonances and of
low-lying collective states in spherical nuclei [18], of the
evolution of the low-lying isovector dipole response in nu-
clei with a large neutron excess [19,20], and of toroidal
dipole resonances [21].

In the relativistic framework, the QRPA can be formu-
lated in the canonical single-nucleon basis of the relativis-
tic Hartree-Bogoliubov (RHB) model. The eigensolutions
of the RHB eq. (4) form a set of orthonormal single-
quasiparticle states. The corresponding eigenvalues are
the single-quasiparticle energies. Any RHB wave function
can be written either in the quasiparticle basis as a prod-
uct of independent quasiparticle states, or in the canonical
basis as a highly correlated BCS state. The canonical ba-
sis is specified by the requirement that it diagonalizes the
single-nucleon density matrix . The transformation to the
canonical basis determines the energies and occupation
probabilities of single-nucleon states, that correspond
to the self-consistent solution for the ground state of
a nucleus. Since it diagonalizes the density matrix, the
canonical basis is localized. It describes both the bound
states and the positive-energy single-particle continuum.

Taking into account the rotational invariance of the nu-
clear system, the matrix equations of the relativistic quasi-
particle random-phase approximation (RQRPA) read

(

AJ BJ

B
∗J A

∗J

)(

Xν,JM

Y ν,JM

)

= ων

(

1 0
0 −1

)(

Xν,JM

Y ν,JM

)

.

(11)
For each RQRPA energy ων , (Xν) and (Y ν) de-
note the corresponding forward- and backward-going
two-quasiparticle amplitudes, respectively. The coupled

RQRPA matrices in the canonical basis read

AJ
kk′ll′ = H

11(J)
kl δk′l′ −H

11(J)
k′l δkl′ −H

11(J)
kl′ δk′l

+H
11(J)
k′l′ δkl +

1

2
(ξ+kk′ξ

+
ll′ + ξ−kk′ξ

−

ll′)V
J
kk′ll′

+ζkk′ll′ Ṽ
J
kl′k′l , (12)

BJ
kk′ll′ =

1

2
(ξ+kk′ξ

+
ll′ − ξ

−

kk′ξ
−

ll′)V
J
kk′ll′

+ζkk′ll′(−1)
jl−jl′+J Ṽ J

klk′l′ . (13)

H11 denotes the one-quasiparticle terms,

H11
kl = (ukul − vkvl)hkl − (ukvl + vkul)∆kl , (14)

i.e. the canonical RHB basis does not diagonalize the

Dirac single-nucleon mean-field Hamiltonian ĥD and the
pairing field ∆̂. The occupation amplitudes vk of the
canonical states are eigenvalues of the density matrix. Ṽ
and V are the particle-hole and particle-particle residual
interactions, respectively. Their matrix elements are mul-
tiplied by the pairing factors ξ± and ζ, defined by the oc-
cupation amplitudes of the canonical states. The relativis-
tic particle-hole interaction Ṽ is defined by the same ef-
fective Lagrangian density as the mean-field Dirac single-

nucleon Hamiltonian ĥD. Ṽ includes the exchange of the
isoscalar scalar σ-meson, the isoscalar vector ω-meson, the
isovector vector ρ-meson, and the electromagnetic interac-
tion. The two-body matrix elements include contributions
from the spatial components of the vector fields:

ζkk′ll′ =















η+
kk′η

+
ll′ for σ, ω

0, ρ0, A0 if J is even ,
for ω, ρ, A if J is odd ,

η−kk′η
−

ll′ for σ, ω
0, ρ0, A0 if J is odd ,

for ω, ρ, A if J is even ,

with the η-coefficients defined by

η±kk′ = ukvk′ ± vkuk′ , (15)

and
ξ±kk′ = ukuk′ ∓ vkvk′ . (16)

The RQRPA configuration space includes the Dirac
sea of negative-energy states. In addition to the configu-
rations built from two-quasiparticle states of positive en-
ergy, the RQRPA configuration space must also contain
pair-configurations formed from the fully or partially oc-
cupied states of positive energy and the empty negative-
energy states from the Dirac sea. The inclusion of con-
figurations built from occupied positive-energy states and
empty negative-energy states is essential for current con-
servation and the decoupling of spurious states, as well
as for a quantitative comparison with the experimental
excitation energies of giant resonances [16,22].

The RQRPA model is fully self-consistent: the same in-
teractions, both in the particle-hole and particle-particle
channels, are used in the RHB equations that determines
the canonical quasiparticle basis, and in the RQRPA equa-
tions. In both channels the same strength parameters of
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Fig. 3. The isovector dipole strength function for 22O (left).
The proton and neutron transition densities for the peak at
E = 8.65 MeV are shown in the right panel.

the interactions are used in the RHB and RQRPA calcu-
lations. The parameters of the effective interactions are
completely determined in RHB calculations of ground-
state properties, and no additional adjustment is needed
in RQRPA calculations. This is an essential feature and
it ensures that RQRPA amplitudes do not contain spuri-
ous components associated with the mixing of the nucleon
number in the RHB ground state (for 0+ excitations), or
with the center-of-mass translational motion (for 1− exci-
tations).

In order to illustrate the RHB+RQRPA approach we
analyze the isovector dipole and isoscalar quadrupole re-
sponse of 22O. The calculation is fully self-consistent: the
same combination of effective interactions, NL3 in the ph-
channel and Gogny D1S in the pp-channel, are used both
in the RHB calculation of the ground state and as RQRPA
residual interactions. Similar calculations for the neutron-
rich oxygen isotopes were recently performed in the frame-
work of the non-relativistic continuum linear-response the-
ory based on the Hartree-Fock-Bogoliubov formalism in
coordinate state representation [23,24].

The isovector strength function (Jπ = 1−) of the
dipole operator

Q̂T=1
1µ =

N

N + Z

Z
∑

p=1

rpY1µ −
Z

N + Z

N
∑

n=1

rnY1µ (17)

for 22O is displayed in the left panel of fig. 3. In this ex-
ample we also compare the results of the RMF+RRPA
calculations without pairing, with pairing correlations in-
cluded only in the RHB ground state (no dynamical pair-
ing), and with the fully self-consistent RHB+RQRPA re-
sponse. A large configuration space enables the separation
of the zero-energy mode that corresponds to the spurious
center-of-mass motion. In the present calculation for 22O
this mode is found at E = 0.04 MeV.

The isovector dipole response in neutron-rich oxygen
isotopes has recently attracted considerable interest be-
cause these nuclei might be good candidates for a possible
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Fig. 4. The RHB+RQRPA isoscalar and isovector quadrupole
strength distributions for 22O (left panel). In the right panel
the full RHB+RQRPA isoscalar strength function (solid) is
compared to the RMF+RRPA calculation without pairing
(dotted), and with the response obtained when the pairing in-
teraction is included only in the RHB ground state (dashed).

identification of the low-lying collective soft mode (pygmy
state), that corresponds to the oscillations of excess neu-
trons out of phase with the core composed of an equal
number of protons and neutrons [25]. The strength func-
tions shown in fig. 3 illustrate the importance of includ-
ing pairing correlations in the calculation of the isovector
dipole response. Pairing is, of course, particularly impor-
tant for the low-lying strength below 10 MeV. The in-
clusion of pairing correlations in the full RHB+RQRPA
calculation enhances the low-energy dipole strength near
the threshold. For the main peak in the low-energy re-
gion (≈ 8.65 MeV), in the right panel of fig. 3 we display
the proton and neutron transition densities. In contrast to
the well-known radial dependence of the IVGDR transi-
tion densities (proton and neutron densities oscillate with
opposite phases, the amplitude of the isovector transition
density is much larger than that of the isoscalar compo-
nent), the proton and neutron transition densities for the
main low-energy peak are in phase in the nuclear interior,
there is no contribution from the protons in the surface
region, the isoscalar transition density dominates over the
isovector one in the interior, and the strong neutron tran-
sition density displays a long tail in the radial coordinate.
The effect of pairing correlations on the isovector dipole
response in 22O is very similar to the one obtained in the
HFB+QRPA framework [24]. In the low-energy region be-
low 10 MeV, however, the pairing interaction used in the
QRPA calculation produces a much stronger enhancement
of the dipole strength, as compared to the results shown
in fig. 3. The reason probably lies in the choice of the pair-
ing interaction. While we use the volume Gogny pairing,
in ref. [24] a density-dependent delta force was used in the
pp channel. This interaction is surface peaked and there-
fore produces a stronger effect on the low-energy dipole
strength near the threshold. Nevertheless, we emphasize
that the RHB+RQRPA results for the low-lying dipole
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strength distribution in 22O are in very good agreement
with recent experimental data [25].

In the left panel of fig. 4 we display the RHB+RQRPA
isoscalar and isovector quadrupole (Jπ = 2+) strength dis-
tributions in 22O. The low-lying Jπ = 2+ state is calcu-
lated at E = 2.95 MeV, and this value should be compared
with the experimental excitation energy of the first 2+

state: 3.2 MeV [26]. The strong peak at E = 22.3 MeV in
the isoscalar strength function corresponds to the isoscalar
giant quadrupole resonance (IS GQR). The isovector re-
sponse, on the other hand, is strongly fragmented over the
large region of excitation energies E ' 18–38 MeV. The
effect of pairing correlations on the isoscalar response is
illustrated in the right panel of fig. 4, where again the
full RHB+RQRPA strength function is compared to the
RMF+RPA calculation without pairing, and with the re-
sponse obtained when the pairing interaction is included
only in the RHB ground state (no dynamical pairing).
As one would expect, the effect of pairing correlations is
not particularly pronounced in the giant resonance region.
The inclusion of pairing correlations, however, has a rela-
tively strong effect on the low-lying 2+ state. This is seen
more clearly in the left panel of fig. 5, where only the
low-energy portion of the isoscalar strength distributions
in 22O is shown. With respect to the RRPA calculation,
the inclusion of the pairing interaction in the static solu-
tion for the ground state increases the excitation energy of
the lowest 2+ state by ≈ 3 MeV. The fully self-consistent
RHB+RQRPA calculation lowers the excitation energy
from ≈ 4.5 MeV to E = 2.95 MeV. The inclusion of pair-
ing correlations increases the collectivity of the low-lying
2+ state. The proton and neutron transition densities for
the 2+ state at E = 2.95 MeV are shown in the right panel
of fig. 5. They display a characteristic radial dependence.
Both transition densities are peaked in the surface region,
but the proton contribution is much smaller. The RQRPA
results for the 2+ excitations are in agreement with non-

relativistic QRPA calculations of the quadrupole response
in neutron-rich oxygen isotopes [24,27].

The relativistic QRPA formulated in the canonical ba-
sis of the RHB model represents a significant contribu-
tion to the theoretical tools that can be employed in the
description of the multipole response of unstable weakly
bound nuclei far from stability.
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